US009256850B2

a2 United States Patent 10) Patent No.: US 9,256,850 B2
Harley et al. 45) Date of Patent: Feb. 9, 2016
(54) ORPHAN TOKEN MANAGEMENT DURING 2008/0115123 Al 5/2008 Kelly et al.
IN-FLIGHT PROCESS SYSTEM MIGRATION 2008/0196027 Al* 82008 Hohmannetal. ... 718/100
2009/0064130 Al* 3/2009 Davisetal. ... 717/173
(71) Applicant: International Business Machines 2009/0125899 Al 5/2009 Unfried
Corporation, Armonk, NY (US) 2009/0327199 Al 12/2009 Weber et al.
’ ’ 2010/0121668 Al* 52010 Hohmannc.coccece. 705/8
(72) Inventors: Gregory D. Harley, Manor, TX (US); ;8}?; 85;5?; i i} 2; ;8}? g(’hmimll
. ecs et al.
(Sglsgay F. Kottaram, Cedar Park, TX 2011/0154336 Al 6/2011 Balko
2011/0276968 Al 112011 Kand et al.
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Leemburg, B, “A declarative meta modeling approach to define pro-
patent is extended or ad}usted under 35 cess migration constraints”, Masters Thesis, University of
U.S.C. 154(b) by 205 days. Groningen, Aug. 2011, pp. 1-82.*
(Continued)
(21) Appl. No.: 13/682,905
(22) Filed: Nov. 21, 2012 Primary Examiner — Li B Zhen
(65) Prior Publication Data Assistant Examiner — Bradford Wheaton
US 2014/0143765 Al May 22.2014 (74) Allorney, Agenl, or Firm — Richard A. Wilhelm;
’ Thomas E. Tyson
(51) Imt.ClL
GO6F 9/44 (2006.01)
G060 10/06 (2012.01) 7 ABSTRACT
(52) [Gjos6FCf/445 (2006.01) A method, apparatus, and computer-readable storage media
CPC ' G060 10/067 (2013.01); GOGF 8/65 for managing orphan tokens in a business process system. The
"""""""" e (2013.01) method may include a first business process system template
(58) Field of Classification Search ’ being compared by computer to a second business process
CPC GOGF 8/65: GOGF 8/67: GOGF 8/63 system template. The method may include predicting by com-
uspC .. ’ 17168 puter at least one predicted orphan token that would be
See apphcatlonﬁleforcomplete searchhlstory orphaned if the business process system is migrated to the
second business process system template from the first busi-
(56) References Cited ness process system template. The method may include fur-

7,406,424 B2
2002/0052771 Al*
2006/0095276 Al*
2008/0059387 Al

U.S. PATENT DOCUMENTS

7/2008 Cheniyil et al.

5/2002 Baconetal.cccoceernine 705/8
5/2006 Axelrodetal. 705/1
3/2008 Vaidhyanathan et al.

COMPARATOR
105

ther generating by computer an orphan token policy file to
manage orphan tokens, and modifying a migration file using
the orphan token policy file.

11 Claims, 4 Drawing Sheets

90

e

AcTvITY | 113
1128

ACTNITY
1128

TEMPLATE
100

ORPHAN TOKEN
POLICY
1324
ORPHAN TOKEN
PoLICY
1328

POLICY FILE
130

CHANGE
LoG

POLICY
GENERATOR
170

150

ACTVITY
112N

SECOND
TEMPLATE
110

: MIGRATION
FILE
ORPHAN TOKEN
POLICY 160
132N

US 9,256,850 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Leemburg, B., “A declarative meta modeling approach to define
process migration constraints”, Masters Thesis, University of
Groningen, Aug. 24, 2011, pp. 1-82.

Zentner, C., “Dynamic Business Processes: Applying model changes
to in-flight processes in V7”, Impact 2010, May 2-7, 2010, Las Vegas,
NV, © IBM Corporation 2009.

* cited by examiner

U.S. Patent Feb. 9, 2016 Sheet 1 of 4
103_ ACTIVITY
102A
COMPARATOR
105
| AcTIVITY
102B
A 4
| AcTivITY CHANGE
102C LOG
150
4 ACTIVITY il
102N
POLICY
FIRST GENERATOR
TEMPLATE 170
100

ORPHAN TOKEN
POLICY
132A

ORPHAN TOKEN
POLICY

132B

ORPHAN TOKEN
POLICY
132N

US 9,256,850 B2

90

ACTIVITY
112A

ACTIVITY
112B

ACTIVITY
112C

ACTIVITY
112N

SECOND

110

TEMPLATE

TOKEN
RULES
175

POLICY FILE
130

A 4

MIGRATION
FILE
180

FIG. 1

U.S. Patent Feb. 9, 2016 Sheet 2 of 4 US 9,256,850 B2

200

102 /
ACTIVITY

" X ACTIVITY/ HOST

TEMDPEATE PLATFORM

ACTIVITY

\/Q'HZ

™
OPERATING | 53
SYSTEM

GUEUE 230\ 130 ~

T INK WORKFLOW
A | ik MANAGEMENT POLICY FILE
250 LINK SYSTEM

COMPARATOR
105

CHANGE LOG
150

POLICY
GENERATOR
170

TOKEN RULES
175

MIGRATION
FILE
180

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 4 US 9,256,850 B2

300
———{(START) /
301
il LOAD NEW
TEMPLATE
SELECT 310
PROCESS
INSTANCE
305 LOAD
EXISTING
TEMPLATE
315
A\ 4
PREDICT
DERIVE |, DETERMINE
ORPHAN [&———— 1 ANGE LOG [CHANGES
TOKENS
335 330 320
A\ 4
! |
CREATE | USERRULE/ |
POLICY FILE [¢ | POLICY INPUT |
340 | %0
A\ 4
MODIFY
MIGRATION
FILE
360
\ 4
MIGRATE
PROCESS
370
380 v

END FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 4 of 4 US 9,256,850 B2
COMPUTER 401
MEMORY
402 404
—— === S=— 220
| PROCESSOR | OPERATING |
| SYSTEM
' 402a ,
| v I WORKFLOW 230
I
| 2075 I MANAGEMENT o
I SYSTEM
: CPU | 403
; 170
I 202¢ :MEMORY BUS POLICY
: CPU | GENERATOR
| | 130
| 402d I POLICY FILE |—
| | cpu |
| 175
L TOKEN RULES -J
180
MIGRATION FILE |—
105
COMPARATOR
<41o
/O BUS INTERFACE
I
I/O BUS
(
408
412 414 416 418
TERMINAL STORAGE I/O DEVICE -
INTERFACE INTERFACE INTERFACE | | NETWORK
INTERFACE

FIG. 4

US 9,256,850 B2

1
ORPHAN TOKEN MANAGEMENT DURING
IN-FLIGHT PROCESS SYSTEM MIGRATION

TECHNICAL FIELD

Embodiments described herein generally relate to process
system migration, and more specifically to orphan tokens
created in process system migration.

BACKGROUND

Modern computer systems often use software to organize
and monitor business processes. Often software is updated to
correct errors, add features, or improve user interface. Soft-
ware used for organization and monitoring of business pro-
cesses may also be upgraded or updated to account for
changes in law, business practices, organizational structures,
and business policies. The updating of such software is often
known as a migration, as information from one version is
transferred or used in the next.

SUMMARY

In one embodiment, a method is provided for managing
orphan tokens in a business process system. The method may
include a first business process system template being com-
pared by computer to a second business process system tem-
plate. The method may include predicting by computer at
least one token that would be orphaned if the business process
system is migrated to the second business process system
template from the first business process system template. The
method may include further generating by computer an
orphan token policy file to manage orphan tokens, and modi-
fying a migration file using the orphan token policy file.

In another embodiment, a computer-readable storage
media is provided for managing orphan tokens in a business
process system. The method may include a first business
process system template being compared by computer to a
second business process system template. The method may
include predicting by computer at least one token that would
be orphaned if the business process system is migrated to the
second business process system template from the first busi-
ness process system template. The method may include fur-
ther generating by computer an orphan token policy file to
manage orphan tokens, and modifying a migration file using
the orphan token policy file.

Yet another embodiment is directed to an apparatus for
managing orphan tokens in a business process system.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by
way of limitation, in the figures of the accompanying draw-
ings in which like reference numerals refer to similar ele-
ments or steps.

FIG. 1is a pictorial illustration of a process for creating an
orphan token policy file for process system migration, in
accordance with an embodiment of the invention.

FIG. 2 is a schematic illustration of workflow editorial
system configured for creating an orphan token policy file for
process system migration, in accordance with an embodiment
of the invention.

FIG. 3 is a flow chart illustrating the creation and use of
orphan token policy file for process system migration, in
accordance with an embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 4 depicts a high-level block diagram of an exemplary
system according to an embodiment of the invention.

DETAILED DESCRIPTION

A business process system generally refers to software
used for organization and monitoring of business processes,
and an example of which is Business Process Manager (BPM)
produced by IBM. The business process system may be gen-
erated by computer and may model a particular business
process. The business process system may be used to manage
activities within a business such as finance, engineering
projects, loan application processing, or marketing activities
and larger versions of such software tools and suites may be
used to manage business or corporate wide activities. Busi-
ness process system software, such as the previously men-
tioned BPM, may use Business Process Model and Notation
(BPMN) which may use a graphical representation for speci-
fying business process in a business process model or Busi-
ness Process diagram (BPD). The use of such modeling and
notation is to improve the use and support of the business
process system software by making it intuitive to both the
technical and business users. These models and notations
may consist of diagrams constructed from a set of graphical
elements which may provide all users with a consistent and
visible understanding what may occur in the business process
system.

Business process system migration may occur whenever
business process system software is updated, revised, or
modified. When a business process system migration occurs,
instances within, attached to, or using the business process
system may also need to be migrated. An instance may be an
entire workflow of a transaction, or single project, in the
business process system. For example, the instance may be
the flow through the business process system of a single loan
request, engineering project, or marketing campaign. A
single instance may take days, weeks, months, or even years
to completely pass through the business process system, and
may require thousands of steps, forms, and data entries during
that time. For example, it may take several months for a loan
application to pass from application acceptance to approval.
The business process system migration may involve the
updating of not just the application software used but also the
electronic forms, tables, and data stored for each instance.
During business process system migrations, all currently
active instances within the business process system may be
migrated.

The migration of a business process system may be accom-
plished using a migration file. The migration file may be used
convert the business process system from a first business
process system template to a second business process system
template. In various embodiments, the migration file may
convert the instances that use, are connected to, or are within
the business process system as part of the migration. In one
embodiment, the migration file may be run on a computer
system or network that contains the business process system.
In another embodiment, the migration file may use dedicated
hardware or software that may be used to migrate the business
process system. In another embodiment, the migration file
may be built into or part of the business process system. The
migration file may contain data, instructions, programming,
rules or other elements that may be use to migrate a business
process system.

A token is generated and may be updated by the business
process system to store activity data regarding each instance
of a use of the particular business process. The token may
contain an electronic marker of where the instance is in the

US 9,256,850 B2

3

business process system. The token may also include infor-
mation on the progress of activities and data for the instance.
For example, the token may include a checklist of all data
entries for the process instances. The checklist may beused to
confirm that the instances and token may progress through the
business process system. An orphan token is a token with an
incomplete or unfulfilled piece of data for the token based
upon the instance location in the business process system. An
orphan token is unable to advance through the new business
process system. Orphan tokens may require time consuming
work during or after the instance process migration to repair
so that the instance may progress through the new business
process system.

In one example, a bank using BPM software to manage
loans decides to change the form used for loans in the busi-
ness process system. The original form and workflow speci-
fied within the current business process system may require
the application have the approval of a loan manager and the
token may record the approval. The new form and workflow
process removed the need for the loan manager to approve the
application. In the new process a VP instead of the loan
manager must approve the application per the new business
process, a system and the token may need to record the
activity. In the example, an instance for a loan may be in the
current business process system when a migration occurs. If
the instance, and the associated token, has already passed the
activity where the approval, previously required by the loan
manager, is completed at the time of the migration, the system
may now have an orphan token in the data representing the
now needed VP approval. The token may now show that the
VP approval is incomplete and may create errors in the sys-
tem since it may be irresolvable or illogical to the new busi-
ness process system. The new business process system may
have no way to ask for the approval at the current activity
level, and the new business process system may not be able to
move the instance forward with the token showing as an
incomplete data point, thus resulting in an error that may
require time and labor to resolve.

A business process may be defined by a template. The
template may contain all activities, order of such activities,
data, organization, forms, links, and workflows that may be
used by the business process system for any instance that is
entered into it. In the templates, activities may be a group of
data entries, computations, or decisions that are combined.
Links are the path or workflow connecting the activities.
Templates may contain information on tokens, what they
record, and what they must show for instances to progress
through the business process system. Changes in business
process systems may result in changes in the template used
for the business process system, thus a migration of a business
process system may include the first business process system
changing from a first business process system template
(herein after referred to as a first template) to a second busi-
ness process system template (herein after referred to as a
second template) for the new second business process. In
accordance with an embodiment of the present invention, the
first and second templates may be compared by a computer so
that tokens that may be orphaned by a migration may be
predicted. Changes of both activities and links between
activities can be logged and compared for changes that may
create orphan tokens in order to generate an orphan token
policy file. The orphan token policy file generated may be
used in the migration file used during the business process
system migration to manage orphan tokens created during the
migration thus preventing time consuming and costly delays
caused by orphan tokens.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a pictorial illustration of a process 90 for creating
an orphan token policy file for business process system
migration. As shown in FI1G. 1, a first business process system
template 100 (herein after referred to as first template) may be
a template of the current business process system. The first
template may include the different activities 102A, 102B,
102C, 102N and the links 103 between these activities. The
template, as previously mentioned, may include all possible
activities and links between the activities for each type of
instance possible in the business process system.

In one example, the template may contain the process for
all loan activities, including the workflow of activities for
instances of home loans, car loans, and small business loans.
The template may also contain links between the activities.
The links, as previously mentioned, may include jumps or
connections between activities or the transfer of data from
one activity to another. For example, if the first activity 102A
is the form for applying for a loan, the link 103 may specity to
proceed to activity 102B if the token indicates the application
is for a home loan or instead to activity 102C if the token
indicates the application is for a business loan. A second
business process system template 110 (herein after referred to
as second template) may include all possible activities and
links for a revised business process system. The activities
112A,112B, 112C, 112N and links 113 are shown for second
template 110, and these activities may have equivalents
within the activities of the first template 100. A comparator
105 may be used to compare the second template 110 and the
first template 100 in order to predict activities, links, and
information that the token may record or use that may be
added, removed, or modified between the templates.

In one embodiment, a change log 150 of added, removed,
or modified activities, links, and data requirements for 102A,
102B,102C, 102N, 112A,112B, 112C, 112N may be derived
through a comparison of the links, activities, and data require-
ments for 102 and 112 in the first and second templates 100
and 110. In another embodiment, the change log 150 may
include changes to the tokens and token requirements
between activities and links for specific types of instances or
workflows of the process. In various embodiments, the
change log may contain a specific list of predicted orphan
tokens. In other embodiments, the change log may contain
and provide information on changes to the business process
system so that predicted orphan tokens may be predicted by
another element such as the policy generator 170.

The activities, links, tokens, or predicted orphan tokens in
the change log 150 may be used by a policy generator 170 to
create an orphan token policy file 130 with orphan token
policies 132A,132B, 132N (herein after collectively referred
to as 132). In embodiments where the change log does not
identify predicted orphan tokens, the policy generator 170
may perform the function of searching for predicted orphan
tokens using information provided by the change log 150.
Once the predicted orphan tokens are identified, either by the
change log 150 or by the policy generator 170 the orphan
token policy file 130 may be created by the policy generator
170. The orphan token policy file may be created by compar-
ing the predicted orphan tokens to a set of token rules 175 for
handling orphan token types.

In one embodiment, activities, links, or data in the process
may have designations explaining their existence. The token
may also use such designations internally for information it
tracks or data it collects. When predicting how to apply the
token rules 175 to the predicted orphan tokens in the creation
of'an orphan token policy file designations such as these may
be used. An activity, link, or data that exists to comply with a
law may be coded “L”, whereas ones that are based on a

US 9,256,850 B2

5

quality control policy may be coded “Q1”, “Q2”, or “Q3”
with the numerical value designating as organizational level
of importance to the policy. In one example, the token rules
175 may be applied to predicted orphan tokens with an “L”
designation due to a missing data point with an “L.” designa-
tion. The rule may require that if a predicted orphan token has
an “L” designation the instance is relocated to the earliest
activity that the data point appears. This may allow the pre-
dicted orphan token to be corrected and the associated
instance to progress in the changed business process system
without error.

In one example, a law change that requires that approved
loans be filed and assigned a number by a state is to be
implemented in the business process system. The two tem-
plates 100 and 110 are compared and a change log 150 cre-
ated. In the first template 100 this activity and the token of the
state number did not exist. In the second template 110 the
filing and number assignment by the state may occur in activ-
ity 112B. When the instance was migrated the loan, or
instance, was at activity 102C, thus the migration file 180 may
initially attempt to migrate the loan to equivalent activity
112C in the second template 110. The token post migration
may include the number assignment within a checklist But
the token has no record of the number assignment being
completed and the second business process system may not
allow for the recording of the action in activity 112C. The
second business process system may not allow the instance to
progress to a next activity without the number assignment
being recorded in the token checklist This may result in an
orphan token. The orphan token may designate this item on
the checklist as L since it is a legal requirement. The orphan
token policy file 130 created in the example may require that
the instance be reset or relocated to activity 112B, or alterna-
tively to 112 A, to obtain the state number upon the detection
of the orphan token with an L designation. When the orphan
token policy file 130 is used to modify the migration file 180
the error may be corrected, and the time and labor required to
traditionally repair the problem avoided.

In another example, the added activity may be a manager’s
approval that was coded as a Q3 in the checklist of the token.
Q3 in this example may be a quality control policy of low
importance. The token rules 175, applied through the policy
generator 170, may state that Q3 items should be bypassed.
The resulting token policy file may result in the missing item
with a Q3 designation being filled in on the token checklist as
complete. The change made according to the orphan token
policy file may resolve the predicted orphan token during the
migration and allow the instance to progress through the
updated business process system without error.

The process described in connection with FIG. 1 can be
implemented within a workflow editorial processing system
200 shown in FIG. 2. FIG. 2 is a schematic illustration of a
process workflow editorial system configured for creating an
orphan token policy file for business process system migra-
tion. The system can include a host computing platform 210
executing an operating system 220. The host computing plat-
form 210 may be, in one embodiment, the computer system
401, which is further described below. The operating system
220 in turn can support the operation of a workflow manage-
ment system 230. For example, the workflow management
system 230 may be or include a BPM process editing tool that
may create, edit, store, and execute processes of the business
process systems. The workflow management system may
store the different activities 102 and 112 in activity and tem-
plate database 240. Links between the different activities
within 102 or 112 for an executing business process system
can be placed in a queue 250 and ordered for execution in

10

15

20

25

30

35

40

45

50

55

60

65

6

accordance with a workflow defined by a specified arrange-
ment of the activities of the executing business process sys-
tem set forth by the links. For example, the processing of a
loan through both the old and new business process system as
defined in respective templates 100 and 110. The process
workflow editorial system 200 may include a process admin-
istration console.

An orphan token policy file 130 can be created, modified,
and used by the workflow management system 230. The
workflow management system 230 shown includes the com-
parator 105, change log 150, policy generator 170, and token
rules 175 though in other embodiments these elements may
be individual or combined in various forms to accomplish the
required tasks. The workflow management system 230 may
connect to, contain, or be independent of the migration file
180 used in the actual migration. The orphan token policy file
130 may include instructions or policies for managing orphan
tokens, some examples are: supplying or modifying data to
the orphan token from another activity or token, converting or
modifying data entries within the orphan token to satisfy
progression requirements, assigning the orphan token to
another activity, deleting the orphan token, or suspending the
execution of the business process system. Once created the
orphan token policy file may be used to modify the migration
file 180 actually used in the migration of the business process
system.

In one embodiment, a new activity, per the second template
110, may require the approval of two managers at a fourth
activity, where the first template 100 required the signature of
a single manager at the fourth activity. The example migrated
instance is currently at an eighth activity thus the second
approval required may result in an orphan token. The modi-
fied migration file 180 may designate this second signature as
a low priority item and may mark it as complete within the
token to resolve the orphan token status due to the orphan
token policy file. In another embodiment, the approval may be
determined to be of high importance and the instance may be
reset or relocated back to the fourth activity so that the second
approval may be acquired.

In yet further illustration of the orphan token policy file
130, FIG. 3 is a flow chart illustrating a method 300 for
creation and use of orphan token policy file for business
process system migration. The method 300 begins at block
301 and in block 305 an executing business process system
may be selected for migration from the existing first template
100 to a new second template 110. As such, in block 310 and
315, both the first template 100 and the second template 110
are respectively loaded. This may occur in parallel or sequen-
tially in various embodiments.

In block 320, the second template 110 is compared to the
first template 100 for changes between the two versions. The
two templates may be compared at one or many different
levels including activities, links, data entries, or token
requirements. In block 330, a change log 150 may be created
to record the changes to the business process system found
during the comparison of the templates 100 and 110. In one
embodiment, a change log 150 may contain all changes to the
business process system including: added, removed, or modi-
fied activities, links, data entries, or token requirements. In
another embodiment, the change log 150 may include only
changes that affect the tokens and token requirements. In
block 335, the change log may be used to predict the predicted
orphan tokens that may occur during the selected business
process system migration. In one embodiment, a policy gen-
erator 170 may use the change log to predict the predicted
orphan tokens based on the changes recorded to token
requirements. In another embodiment, the policy generator

US 9,256,850 B2

7

170 may have to derive changes to the tokens based upon
changes to activities, links, and data entries recorded in the
change log. In another embodiment, block 335 may be com-
bined with block 320 and the predicted orphan tokens may be
recorded in the change log 150.

In block 340, the predicted orphan tokens are used to
generate an orphan token policy file for managing orphan
tokens found during the migration. The orphan token policy
file may be created by comparing the predicted orphan tokens
to a set of rules for handling orphan token types and creating
orphan token policies 132 to manage their occurrence. As
mentioned in a previous example, designation of importance
given to activities, links, data, or token records may beused in
combination with a set of token rules 175 to assist in the
generation of the orphan token policy file 130.

In block 350, an optional user rule input is shown. The
optional step may include the granting a user the ability to
manually edit the orphan token policy file. This may be
accomplished using a tool such as an XML editor or other
appropriate software tool. User editing of the rules may be
used when the rules applied or the designation given certain
activities or tokens change or have special circumstances.

In block 360, the orphan token policy file may be used to
modify a migration file 180. The migration file 180 may be
used convert the business process system from a first business
system to a second business system as previously discussed.
For example, the modification of the migration file 180 using
the orphan token policy file may be done in a process admin-
istration console, which may be part of or connected to the
workflow management system 230, prior to the migration. In
block 370, the migration from the first business process sys-
tem template to the second business process template occurs
using the modified migration file 180 and the process 300
ends at block 380.

FIG. 4 depicts a high-level block diagram of an exemplary
system for implementing an embodiment of the invention.
The mechanisms and apparatus of embodiments of the
present invention apply equally to any appropriate computing
system. The major components of the computer system 401
comprise one or more CPUs 402, a memory 404, a terminal
interface 412, a storage interface 414, an /O (Input/Output)
device interface 416, and a network interface 418, all of which
are communicatively coupled, directly or indirectly, for inter-
component communication via a memory bus 403, an I/O bus
408, and an I/O bus interface unit 410.

The computer system 401 contains one or more general-
purpose programmable central processing units (CPUs)
402A, 402B, 402C, and 402D, herein generically referred to
as the CPU 402. In an embodiment, the computer system 401
contains multiple processors typical of a relatively large sys-
tem; however, in another embodiment the computer system
401 may alternatively be a single CPU system. Each CPU 402
executes instructions stored in the memory 404 and may
comprise one or more levels of on-board cache.

In an embodiment, the memory 404 may comprise a ran-
dom-access semiconductor memory, storage device, or stor-
age medium (either volatile or non-volatile) for storing data
and programs. In another embodiment, the memory 404 rep-
resents the entire virtual memory of the computer system 401,
and may also include the virtual memory of other computer
systems coupled to the computer system 401 or connected via
a network. The memory 404 is conceptually a single mono-
lithic entity, but in other embodiments the memory 404 is a
more complex arrangement, such as a hierarchy of caches and
other memory devices. For example, memory may exist in
multiple levels of caches, and these caches may be further
divided by function, so that one cache holds instructions

10

15

20

25

30

35

40

45

50

55

60

8

while another holds non-instruction data, which is used by the
processor or processors. Memory may be further distributed
and associated with different CPUs or sets of CPUs, as is
known in any of various so-called non-uniform memory
access (NUMA) computer architectures.

The memory 404 may contain elements for control and
flow of memory used by the CPU 402. The memory may
contain operating system 220, workflow management system
230, policy generator 170, policy file 130, token rules 175,
comparator 105, and migration file 180 along with other
elements discussed previously. These elements may be con-
tained individually in the memory or in various embodiments
where they are combined. In various embodiments, they may
be contained in the memory at different times, added and
removed as required. The illustrated elements are shown as
being contained within the memory 404 in the computer
system 401, in other embodiments some or all of them may be
ondifferent computer systems and may be accessed remotely,
e.g., via a network.

Although the memory bus 403 is shown in FIG. 4 as a
single bus structure providing a direct communication path
among the CPUs 402, the memory 404, and the /O bus
interface 410, the memory bus 403 may in fact comprise
multiple different buses or communication paths, which may
be arranged in any of various forms, such as point-to-point
links in hierarchical, star or web configurations, multiple
hierarchical buses, parallel and redundant paths, or any other
appropriate type of configuration. Furthermore, while the [/O
bus interface 410 and the 1/O bus 408 are shown as single
respective units, the computer system 401 may, in fact, con-
tain multiple /O bus interface units 410, multiple I/O buses
408, or both. While multiple I/O interface units are shown,
which separate the I/0 bus 408 from various communications
paths running to the various I/O devices, in other embodi-
ments some or all of the /O devices are connected directly to
one or more system 1/O buses. A process administration con-
sole may be coupled with the I/O device interface 416.

In various embodiments, the computer system 401 is a
multi-user mainframe computer system, a single-user system,
or a server computer or similar device that has little or no
direct user interface, but receives requests from other com-
puter systems (clients). In other embodiments, the computer
system 401 is implemented as a desktop computer, portable
computer, laptop or notebook computer, tablet computer,
pocket computer, telephone, smart phone, or any other appro-
priate type of electronic device.

FIG. 4 is intended to depict the representative major com-
ponents of an exemplary computer system 401. But indi-
vidual components may have greater complexity than repre-
sented in FIG. 4, components other than or in addition to those
shown in FIG. 4 may be present, and the number, type, and
configuration of such components may vary. Several particu-
lar examples of such complexities or additional variations
have been disclosed herein; these are by way of example only
and are not necessarily the only such variations.

Exemplary embodiments have been described in the con-
text of a fully functional system for creation of the orphan
token policy 130 file for use in modifying the migration file
180 so that orphan tokens found during a business process
system migration may be resolved. Readers of skill in the art
will recognize, however, that embodiments also may include
a computer program product disposed upon computer-read-
able storage medium or media (or machine-readable storage
medium or media) for use with any suitable data processing
system or storage system. The computer readable storage
media may be any storage medium for machine-readable
information, including magnetic media, optical media, or

US 9,256,850 B2

9

other suitable media. Examples of such media include mag-
netic disks in hard drives or diskettes, compact disks for
optical drives, magnetic tape, and others as will occur to those
of skill in the art. Persons skilled in the art will immediately
recognize that any computer or storage system having suit-
able programming means will be capable of executing the
steps of a method disclosed herein as embodied in a computer
program product. Persons skilled in the art will recognize also
that, although some of the exemplary embodiments described
in this specification are oriented to software installed and
executing on computer hardware, nevertheless, alternative
embodiments implemented as firmware or as hardware are
well within the scope of the claims.

As will be appreciated by one skilled in the art, aspects may
be embodied as a system, method, or computer program
product. Accordingly, aspects may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects may take
the form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be used. The computer readable medium may be a
computer-readable signal medium or a computer-readable
storage medium. The computer readable signal medium or a
computer readable storage medium may be a non-transitory
medium in an embodiment. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wire, optical fiber cable, RF, etc.,
or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects may be written in any combination of one or more
programming languages, including an object-oriented pro-
gramming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such
as the C programming language or similar programming lan-

10

15

20

25

30

35

40

45

50

55

60

65

10

guages. The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, or on one module or on two or more mod-
ules of a storage system. The program code may execute
partly on a user’s computer or one module and partly on a
remote computer or another module, or entirely on the remote
computer or server or other module. In the latter scenario, the
remote computer other module may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects are described above with reference to flowchart
illustrations and/or block diagrams of methods, apparatus
(systems) and computer program products according to
embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams,
and combinations of blocks in the flowchart illustrations and/
or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe-
cial purpose computer, or other programmable data process-
ing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function or act specified in the flowchart, or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer-implemented pro-
cess such that the instructions which execute on the computer
or other programmable apparatus provide processes for
implementing the functions or acts specified in the flowchart,
or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams or flowchart illustration, and combinations of
blocks in the block diagrams or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terms “server and “mobile client” are used herein for
convenience only, and in various embodiments a computer
system that operates as a mobile client computer in one envi-

US 9,256,850 B2

11

ronment may operate as a server computer in another envi-
ronment, and vice versa. The mechanisms and apparatus of
embodiments of the present invention apply equally to any
appropriate computing system, including a computer system
that does not employ the mobile client-server model.
While this disclosure has described the details of various
embodiments shown in the drawings, these details are not
intended to limit the scope of the invention as claimed in the
appended claims.
What is claimed is:
1. A method for managing tokens in a business process
system migration, comprising:
generating, by a computer, a change log by comparing
activities and links of a first business process system
template to activities and links of a second business
process system template prior to a migration from the
first to the second template, the change log including
added, removed, and modified activities and links;

predicting prior to the migration, by the computer, at least
one orphan token based on the change log, wherein a
token corresponds with an instance of a use of the busi-
ness process system and includes an electronic marker
of a location of the instance in the business process
system, and an orphan token corresponds with a token
that is unable to advance on a link to a next activity if the
business process system is migrated to the second busi-
ness process system template from the first business
process system template;

generating prior to the migration, by the computer, an

orphan token policy file to manage predicted orphan
tokens, the orphan token policy file including an instruc-
tion for changing an activity stage of a predicted orphan
token prior to the migration from the first to the second
template, wherein the predicted orphan token is
migrated, absent the instruction, to a first activity stage
in the second template after a migration to the second
template from the first template, and the instruction
changes the activity stage that the predicted orphan
token is migrated to in the second template to a second
activity stage, wherein the first and second stages are
different stages of the second template, and the second
activity stage precedes the activity stage of the predicted
orphan token in the first template; and

modifying a migration file prior to the migration, by the

computer, using the orphan token policy file, wherein
the generating of a change log, the predicting of at least
one orphan token, the generating of the orphan token
policy file, and the modifying of a migration file are
computer operations, and each operation is distinct from
the other operations.

2. The method of claim 1, further comprising:

migrating the business process system to the second busi-

ness process system template from the first business
process system template by the computer using the
migration file.

3. The method of claim 1, wherein the orphan token policy
file includes an instruction for modifying data within a pre-
dicted orphan token.

4. The method of claim 1, wherein the orphan token policy
file includes an instruction for deleting a predicted orphan
token.

5. A non-transitory computer-readable storage medium for
managing tokens in a business process system migration, the
storage medium having executable code stored thereon to
cause a machine to perform operations, comprising:

generating, by a computer, a change log by comparing

activities and links of a first business process system

5

10

15

30

40

45

50

55

65

12

template to activities and links of a second business
process system template prior to a migration from the
first to the second template, the change log including
added, removed, and modified activities and links;

predicting prior to the migration, by the computer, at least
one orphan token based on the change log, wherein a
token corresponds with an instance of a use of the busi-
ness process system and includes an electronic marker
of a location of the instance in the business process
system, and an orphan token corresponds with a token
that is unable to advance on a link to a next activity if the
business process system is migrated to the second busi-
ness process system template from the first business
process system template;

generating prior to the migration, by the computer, an
orphan token policy file to manage predicted orphan
tokens, the orphan token policy file including an instruc-
tion for changing an activity stage of a predicted orphan
token prior to the migration from the first to the second
template, wherein the predicted orphan token is
migrated, absent the instruction, to a first activity stage
in the second template after a migration to the template
from the first template, and the instruction changes the
activity stage that the predicted orphan token is migrated
to in the second template to a second activity stage,
wherein the first and second stages are different stages of
the second template, and the second activity stage pre-
cedes the activity stage of the predicted orphan token in
the first template; and

modifying a migration file prior to the migration, by the
computer, using the orphan token policy file, wherein
the generating of a change log, the predicting of at least
one orphan token, the generating of the orphan token
policy file, and the modifying of a migration file are
machine operations, and each operation is distinct from
the other operations.

6. The computer-readable storage medium of claim 5, fur-

ther comprising:

migrating the business process system to the second busi-
ness process system template from the first business
process system template by the computer using the
migration file.

7. The computer-readable storage medium of claim 5,
wherein the orphan token policy file includes an instruction
for modifying data within a predicted orphan token.

8. The computer-readable storage medium of claim 5,
wherein the orphan token policy file includes an instruction
for deleting a predicted orphan token.

9. A workflow management system for managing tokens in
a business process system, comprising:

a comparator to generate a change log for use in a business
process system migration by comparing activities and
links of a first business process system template to
activities and links of a second business process system
template prior to a migration from the first to the second
template, the change log including added, removed, and
modified activities and links, and to predict prior to the
migration at least one orphan token based on the change
log, wherein a token corresponds with an instance of a
use of the business process system and includes an elec-
tronic maker of a location of the instance in the business
process system, and an orphan token corresponds with a
token that is unable to advance on a link to a next activity
if the business process system is migrated to the second
business process system template from the first business
process system template, wherein the generating of a
change log by the comparator is an operation that is

US 9,256,850 B2

13

distinct from an operation including the predicting of at
least one orphan token by the comparator;

a policy generator to create, prior to the migration, an
orphan token policy file to manage predicted orphan
tokens, wherein an operation to create of an orphan
token policy file by the policy generator is distinct from
the operations of the comparator, the orphan token
policy file including an instruction for changing an activ-
ity stage of a predicted orphan token prior to the migra-
tion from the first to the second template, wherein the
predicted orphan token is migrated, absent the instruc-
tion, to a first activity stage in the second template after
a migration to the second template from the first tem-
plate, and the instruction changes the activity stage that
the predicted orphan token is migrated to in the second
template to a second activity stage, wherein the first and
second stages are different stages of the second tem-
plate, and the second activity stage precedes the activity

10

15

14

stage of the predicted orphan token in the first template;
and

the workflow management system to modify a migration

file to migrate the business process system to the second
business process system template from the first business
process system template, wherein the migration file is
modifiable prior to the migration using the orphan token
policy file, wherein an operation modify a migration file
is distinct from the operation to create of an orphan token
policy file by the policy generator and from the opera-
tions of the comparator.

10. The apparatus of claim 9, wherein the orphan token

policy file includes an instruction for modifying data within a
predicted orphan token.

11. The apparatus of claim 9, wherein the orphan token

policy file includes an instruction for deleting a predicted
orphan token.

